Application de l'effet & en RMN ¹⁵N et des couplages 3J ¹H ¹⁵N cis trans à l'identification d'isomères GÉOMETRIQUES Z-E AUTOUR DE LIAISONS C=N

N. NAULET *, M. BELJEAN et G.J. MARTIN

Chimie Organique Physique - E.R.A., C.N.R.S. 315
Université de Nantes B.P. 1044 - 44037 NANTES Cedex *
U.E.B. des Sciences Pharmaceutiques - 1, rue Vaubénard 14000 CAEN

(Received in France 12 July 1976; received in UK for publication 16 August 1976)

Le déplacement diamagnétique observé en RMN ¹³C lorsqu'un atome de carbone subit des interactions à travers l'espace avec un autre atome situé en Y (effet Y) a été utilisé avec succès pour étudier la stéréochimie d'alcanes, d'alcènes, de cyclanes etc.... (1)

Nous désirons montrer ici que cet effet stéréospécifique peut aussi être détecté en RMN 15 N et appliqué à l'identification configurationnelle d'isomères Z-E. Des azines dérivées du benzothiazole ont été choisies car elles possèdent une géométrie adaptée à l'étude de l'effet γ et leur configuration peut être déterminée sans ambigüité au moyen du couplage stéréospécifique 3 J 1 H 15 N cis ou trans.

Les déplacements chimiques $\delta^{15} N$ sont indiqués en italique sur le schéma ils ont été mesurés à 6,08 MHz au moyen d'un spectromètre Brüker WP 60 - DS sur des échantillons marqués à 50 % (2) ; les valeurs $\delta^{15} N$ sont repérées par rapport à NO_3^- externe en utilisant la convention de signe généralement admise en RMN : une augmentation algébrique de δ correspond à une diminution d'écran. Les déplacements chimiques $\delta^{13} C$ ont été mesurés sur le même appareil à 15,08 MHz et sont repérés par rapport au TMS. Ils sont indiqués en caractères gras sur le schéma.

L'attribution des signaux 15 N de $4\underline{Z}$ et $4\underline{E}$ est simple si on considère les valeurs δ^{15} N observées dans les composés modèles $\underline{1}$, $\underline{2}$ et $\underline{3}$. L'azote situé en odu cycle thiazolique résonne aux environs de -110 ppm et 1'azote β à -20 ppm Dans les deux isomères $\underline{4}\underline{Z}$ et $\underline{4}\underline{E}$ 1'écart de déplacement chimique des atomes d'azote sp 2 est appréciable alors que δ^{13} C=N ne varie pratiquement pas.

Les isomères $\frac{4Z}{4Z}$ et $\frac{4E}{4E}$ sont identifiés sans ambiguité au moyen des couplages $^3J^1H \stackrel{1.5}{\sim} N$ trans (10 Hz) et cis (5,4 Hz); il faut aussi noter que les couplages 3J CH₃-C=N dans les deux isomères sont analogues à ceux qui ont été observés dans les oximes (3).

L'azote de $4\underline{z}$ subit un déplacement diamagnétique de 4,8 ppm attribuable à l'effet γ par rapport à 15 N de $4\underline{e}$; le même effet mesuré en RMN 13 C sur le groupe CH_3 du motif imine atteint seulement 3,4 ppm. Cet effet γ , déjà supposé dans des structures non rigides (4) est important et constitue un bon critère de configuration.

Comme la position de résonance 13 C du groupe N-CH₃ du cycle thiazolique ne varie pratiquement pas de <u>l</u> à <u>2</u> et à <u>4Z,E</u> (δ =30,3±0,4 ppm) la configuration W du motif $N_{C}N_{N}$ est vraisemblablement respectée dans la séquence des molécules.

BIBLIOGRAPHIE

- (1) a) J.B. STOTHERS ¹³C NMR spectroscopy Acad. Press New-York London (1972) b) G.J. MARTIN, M.L. MARTIN et S. ODIOT Org. Magn. Res. <u>7</u>,2 (1975)
- (2) R.A. BARTSCH, S. HUNIG et H. QUAST J. Org. Chem. <u>37</u>, 3604 (1972)
- (3) a) D. CREPEAUX, J.M. LEHN et R.R. DEAN Molecular Phys. 16, 225 (1969)
 - b) D. CREPEAUX et J.M. LEHN Org. Magn. Res. $\frac{7}{2}$, 524 (1975)
- (4) a) P.S. PREGOSIN, E.W. RANDALL et A.I. WHITE J. Chem. Soc. Chem. Comm. 1602 (1971)
 - b) R.L. LICHTER et J.D. ROBERTS J. Amer. Chem. Soc. 2495 (1972).